

SÉRIE SDM – SLURRY DENSITY METER (Densímetro para polpa) MANUAL

ÍNDICE

<u>1.</u> <u>PRE</u>	FÁCIO	5
1.1 Fin	IALIDADE	5
1.2 Sín	ABOLOS E CONVENCÕES	5
1.3 So	RREFSTE MANUAL	5
1.3.1 (ÎNVENCĂES	5
1.4 EN	IISSÃO DO DOCUMENTO	6
<u>2. INS</u>	ΤΑΙΑÇÃΟ	6
24		c
2.1 IN1		6
2.2 SEI	LECIONANDO UM LOCAL PARA O SDIVI	8
2.2.1	VIONTAGEM DA TUBULAÇAO VERTICAL	9
2.2.2 ľ	VIONTAGEM HORIZONTAL DA TUBULAÇAO	9
2.2.3 F		10
2.3 INS		11
2.3.1		11
2.3.2		11
2.3.3	ORQUE E PADRAO DE APARAFUSAMENTO	11
2.3.4 1	NSTRUÇÕES	12
2.3.5 F	LANGES COM 4 OU 8 PARAFUSOS	12
2.3.0 f	-LANGES COM 12 PARAFUSUS OU MAIS	12
2.4 INS	STALAÇÃO DO WELDOLET (SDIVI-2 OU SDIVI-3)	13
2.5 INS	MARTER (SDIVI-4 OU SDIVI-5)	13
2.5.1	WAFER (UHIMIWPE)	14
2.5.2	WAFER (METALICO, EX. AISI 316)	17
2.6 INS	STALAÇÃO DO SUIVI NO ADAPTADOR DE PROCESSO	17
2.7 CO	NEXOES ELETRICAS DO SDIVI	17
2./.1 H	PORTA USB	19
2.7.2		19
2.7.3		21
2.7.4 H	HAR I CONECTANDO O MASTER SECUNDARIO AO ANALISADOR	22
2.7.5 (CONEXÃO DA PORTA USB A UM COMPUTADOR	24
<u>3.</u> OPE	RAÇÃO	26
3.1 INT	IRODUÇÃO	26
3.1.1 F	UNCIONALIDADE POR INTERFACE DE USUÁRIO	27
3.2 TE	la de LCD	28
3.2.1 1	ela de LCD para operação do programa	28
3.2.2	Convenção	28
3.2.3 9	STATUS ANALISADOR	29
3.3 OP	ERAÇÃO VIA HART	31
3.4 Po	RTA USB	31
3.4.1 A	ATUALIZAÇÃO DE SOFTWARE	31
3.4.2 A	Aplicativo de manutenção da Rhosonics (Rhosonics SA 9D)	32
4. COM	NFIGURAÇÃO	22

ÍNDICE

4.1	Introdução	33
4.2 .	Tela de LCD	33
4.2.1	Página inicial/Valores medidos (Start page/Measured Values)	33
4.2.2	MENU PRINCIPAL (MAIN MENU)	34
4.2.3	TEMPO DE DECAIMENTO (DECAY TIME)	34
4.2.4	LUZ DE FUNDO (BACK-LIGHT)	34
4.2.5	LINHAS DE EXIBIÇÃO (DISPLAY LINES) (NÃO APLICÁVEL AO SDM)	35
4.2.6	Código de acesso (Access Code)	35
4.2.7	Função avançada (Advanced Function)	35
4.2.8	PROTEÇÃO CONTRA GRAVAÇÃO (WRITE PROTECT)	36
4.2.9	Menu de líquido (Liquid Menu) (não aplicável ao SDM)	36
4.2.10	Verificação de função (Check Function)	36
4.2.11	L INTERVALO DE SAÍDA MA (OUTPUT MA RANGE)	36
4.3	COMUNICAÇÃO HART	37
4.3.1	Ajuste da Variável primária/Atribuição de saída de 4–20 mA	37
4.3.2	Configurar saída de 4–20 mA	38
4.4	CARREGAR E LER CONFIGURAÇÕES ATRAVÉS DO APLICATIVO DE MANUTENÇÃO	40
4.5	CARREGAR E LER AS CONFIGURAÇÃO DO LÍQUIDO ATRAVÉS DO APLICATIVO DE MANUTENÇÃO (NENHUM LÍQUIDO	
DISPON	NÍVEL PARA O SDM)	41
с т		12
<u>5. 1</u>	ELA DE LCD DE CALIBRAÇÃO	42
5.1	Menu de calibração (Calibration Menu)	42
5.1.1	Ajuste de temperatura	42
5.1.2	CALIBRAÇÃO DE S.G. X 1000	42
5.1.3	CALIBRAÇÃO DE CAMPO	44
<u>6. N</u>	1ANUTENÇÃO	<u>45</u>
61 (45
6.2	ATUALIZAD CONEICUDAÇÕES DO SENSOR ADÓS SUDSTITUIÇÃO	4J 47
0.2	ATUALIZAR CUNFIGURAÇUES DU SENSUR AFUS SUBSTITUIÇAU	4/
	~ ~	
<u>7. D</u>	IAGNOSTICO E MANUTENÇAO	48
7.1	Menu de diagnóstico (Diagnostics Menu)	48
7.1.1	STATUS DO SISTEMA (SYSTEM STATUS)	48
7.1.2	RESTAURAR CALIBRAÇÃO (RESTORE CALIBRATION)	49
7.1.3	AJUSTAR DATA E HORA	49
7.1.4	LOG E CONFIGURAÇÕES PARA DIAGNÓSTICO E AVALIAÇÃO	50
7.1.5	COLETAR DADOS DE LOG USANDO USB	51
7.1.6	Apagar log (Erase Log)	52
-		
。		гэ
<u>o. (</u>	ALIDRAÇAU DE DISTRIDUIDURES ATRAVES DU APLICATIVU DE MANUTENÇAU	55
8.1	AJUSTE DE MA (MA TRIMMING)	54
8.2	TEMPERATURA (TEMPERATURE)	54
8.3	CALIBRAÇÃO DA SGX1000	56
8.3.1	Calibração do deslocamento da SGx1000	56
8.3.2	Calibração da amplitude da SGx1000	57

ÍNDICE

<u>9.</u>	ESPECIFICAÇÕES TÉCNICAS	58
9.1	CARACTERÍSTICAS DE OPERAÇÃO	58
9.2	COMPARTIMENTO DO SDM	58
9.3	Sensor do SDM	59
9.4	CARRETEL/WELDOLET/WAFER	59
<u>10.</u>	ANEXOS	60
10.1	1 LISTA DE PEÇAS DE REPOSIÇÃO	60
10.2	2 OPÇÕES	60
10.3	3 ANEXO A: VELOCIDADE DO SOM DA ÁGUA DE 0 A 100 °C	60
10.4	ANEXO B: VELOCIDADE DA ÁGUA A 0-100 °C	61
10.5	5 ANEXO C: COMANDOS DE HART DO SDM	62
10.5	5.1 COMANDOS ESPECÍFICOS RELEVANTES DE DISPOSITIVO DO SDM	62
10.5	5.2 VARIÁVEIS RELEVANTES DE DISPOSITIVO DO SDM	62

PREFÁCIO

1. Prefácio

1.1 Finalidade

Este manual explica a instalação, configuração, operação e calibração do Densímetro para polpas (SDM). Sempre que as configurações também se destinarem a outros modelos, o SDM será referido como analisador.

Para uma fácil leitura e compreensão, o manual é organizado em etapas lógicas que se dividem ao longo de vários capítulos e seções. Sempre que necessário, o manual fornece informações adicionais sobre as questões mencionadas acima.

1.2 Símbolos e convenções

As seguintes palavras e símbolos indicam mensagens especiais:

Este símbolo indica que a não observância da mensagem de aviso pode resultar em lesões corporais.

Este símbolo indica que a não observância das orientações pode resultar em danos ao equipamento ou na perda de informações.

IMPORTANTE:

Esta palavra indica que o texto a seguir contém informações esclarecedoras ou instruções específicas.

NOTA:

Esta palavra indica que o texto a seguir contém comentários, esclarecimentos ou pontos informativos interessantes.

1.3 Sobre este manual

1.3.1 Convenções

- Os símbolos •, e 1. indicam uma etapa a ser executada ou outras instruções
- O texto representado em [Negrito] indica o botão abaixo do visor da tela a ser pressionado
- O texto em ITÁLICO se refere ao texto exibido no visor da tela
- As páginas no visor da tela são representadas como figuras.
- A imagem mostrada no manual pode diferir da imagem mostrada no visor.

1.4 Emissão do documento

Nome do documento (Rhosonics): 3A0-031-C56

Data	Publicação	Descrição
11-11-2015	1	Conceito
10-10-2016	Α	Publicação do manual
01-11-2016	В	Foi adicionado o capítulo adicionado 9.3
05-12-2016	C	Compatível com a versão de software V07.01.02.02
24-07-2017	C1	Operação atualizada para funcionalidade adicional
23-05-2018	D	Versão de hardware manual 2
09-10-2018	E	Compatível com as configurações carregáveis do sensor

2. Instalação

2.1 Introdução

Finalidade:

Instalação da unidade SDM, bem como os respectivos cabos e adaptadores. O SDM é um sensor autônomo de 24 VCC com protocolo HART e saída de 4–20 mA

A instalação deve ser executada por técnicos qualificados em instalação (mecânicos e eletricistas).

O SDM, que é instalado em uma seção do carretel especialmente preparada, em uma seção do wafer ou que é usado em conjunto com um adaptador de tubulação (Weldolet), possui uma face do sensor em cerâmica que deve estar em contato com uma parte representativa da polpa a ser medida.

IMPORTANTE:

A superfície da face frontal cerâmica deve estar alinhada com o diâmetro interno da tubulação. Caso contrário, o SDM não efetuará a medição corretamente.

Instalação:

- No capítulo 2.1 e 2.2, há instruções comuns para a montagem do adaptador do SDM em uma linha de processo. Este capítulo é válido para todos os tipos de adaptadores do sensor.
- Do capítulo 2.3 ao 2.5, são descritas diferentes instruções de montagem dos adaptadores do SDM. Em "Fornecido pela Rhosonics" [Provided by Rhosonics], há uma descrição dos diferentes tipos de adaptadores do SDM.

- No capítulo 2.6, são descritas as instruções de montagem do SDM.
- No capítulo 2.7, são descritas as instruções da montagem elétrica do SDM.

Devem ser fornecidos no local:

- Hardware de montagem, por exemplo, parafusos, porcas, arruelas, vedação da junta
- Alimentação de 24 VCC
- Cabo de alimentação de 24 VCC
- Cabo HART/4 a 20 mA

OU

Cabo combinado para potência de 24 VCC e HART

Um sistema de SDM de densidade é composto pelos seguintes componentes:

• SDM (incluindo o hardware de montagem no adaptador)

SDM, versão dividida (ex., ponta de 52 mm)

Hardware de entrada de processo para SDM

Há cinco tipos de adaptadores diferentes:

o SDM-1: Carretel para ponta de sensor de 16 mm; consulte o capítulo 2.3

Ponta de 16 mm para carretel de SDM-1

- o SDM-2: Weldolet para ponta do sensor de 34 mm; consulte o capítulo 2.4
- SDM-3: Weldolet para ponta do sensor de 52 mm; consulte o capítulo 2.4

Ponta de 34 mm para Weldolet de SDM-2

Ponta de 52 mm para Weldolet de SDM-3

- SDM-4: Wafer (UHMWPE ou metal) para ponta do sensor de 146 mm; consulte o capítulo 2.5
- SDM-5: Wafer (UHMWPE ou metal) para ponta do sensor de 200 mm; consulte o capítulo 2.5

Ponta de 146 mm de wafer SDM-4

2.2 Selecionando um local para o SDM

As diretrizes a seguir se aplicam a todos os SDM:

- Instale o SDM com 5xD de comprimento de tubulação reta a montante e 3xD de comprimento de tubulação reta a jusante.
- Evite a instalação em uma seção de tubulação onde a ponta do SDM poderá desgastar rapidamente
- Evite a instalação perto de válvulas de dosagem.
- Em caso de fluxo com direção a montante, recomendamos a instalação vertical da tubulação; consulte o capítulo 2.2.1.
- Instalação horizontal da tubulação: O sensor deve ser instalado lateralmente; consulte o capítulo 2.2.2.

Ponta de 200 mm de wafer de SDM-5

Manual do SDM

2.2.1 Montagem da tubulação vertical (Somente se o fluxo estiver na direção a montante).

Na tubulação vertical, qualquer orientação é possível. Certifique-se de montar o SDM com o visor na posição correta e com o prensa-cabos apontando para baixo, a fim de evitar a entrada de líquidos.

Montagem vertical (ex., wafer)

2.2.2 Montagem horizontal da tubulação

Em caso de instalação vertical da tubulação, algumas considerações devem ser observadas. A instalação preferencial em uma tubulação horizontal é mostrada abaixo. O SDM deve ser instalado no lado esquerdo ou direito da tubulação.

Montagem horizontal da tubulação a 90° (ex., wafer)

A tolerância máxima é de 15° a partir da linha horizontal (para baixo), conforme mostrado abaixo.

Montagem de tubulação horizontal a 105° (ex., wafer)

2.2.3 Rotação da cabeça do analisador

A cabeça do analisador pode ser girada em qualquer posição (360°). Abaixo, são mostrados alguns exemplos.

Tenha o máximo cuidado ao girar o compartimento. Se não for manipulado corretamente, você pode danificar o SDM definitivamente, especialmente os contatos acionados por mola na parte do sensor. Consulte também o capítulo 6.

Diferentes posições do compartimento

2.3 Instalação do carretel (SDM-1)

Os componentes de encaixe devem ser verificados para assegurar a compatibilidade das tolerâncias e acoplamentos. Não use nenhum componente aparentemente irregular ou que não se encaixe corretamente. Entre em contato com o fabricante do produto para determinar a sua usabilidade.

Exemplo de montagem da peça do carretel

2.3.1 Material de vedação

A vedação dos flanges de metal exige conhecimento, habilidade e experiência. Dependendo do sistema de tubulação em que o carretel estiver instalado, poderão ser necessários requisitos especiais. Caso não esteja familiarizado com os procedimentos necessários, consulte a pessoa responsável antes da instalação.

2.3.2 Vedação da junta

Para materiais de vedação, consulte a pessoa responsável pelo projeto original do sistema de tubulação.

2.3.3 Torque e padrão de aparafusamento

As roscas devem ser limpas e bem lubrificadas. As condições reais do campo podem exigir variações nestas recomendações.

2.3.4 Instruções

- 1. Alinhe cuidadosamente as seções da tubulação com o carretel para evitar estresse na superfície do flange do carretel. Além disso, a tubulação deve ser protegida e apoiada para evitar movimentos que possam criar estresse em excesso e danificar a face do flange.
- 2. Assim que a vedação estiver no lugar, alinhe os orifícios do parafuso do carretel e as faces adjacentes do flange
- 3. Lubrifique ligeiramente e insira todos os parafusos e arruelas, depois coloque as porcas mas sem apertar
- 4. Enumere todos os parafusos para fins de registro
- 5. Verifique se as faces das superfícies de encaixe estão niveladas com a vedação antes de aparafusar os flanges.
- 6. Com as mãos, aperte as porcas até que se acomodem. Pressione uniformemente sobre as faces do flange apertando os parafusos nos incrementos descritos abaixo.

2.3.5 Flanges com 4 ou 8 parafusos

- 1ª volta 30% de torque final (ordem sequencial do flange, cruzada)
- 2ª volta 60% de torque final (ordem sequencial do flange, cruzada)
- 3ª volta 100% de torque final (ordem sequencial do flange, cruzada)
- Após o prazo final de 24 horas no sentido horário ou anti-horário, gire sequencialmente o flange

2.3.6 Flanges com 12 parafusos ou mais

- 1ª volta 20% de torque final (ordem sequencial do flange, cruzada)
- 2ª volta 40% de torque final (ordem sequencial do flange, cruzada)
- 3ª volta 80% de torque final (ordem sequencial do flange, cruzada)
- 4ª volta 100% de torque final (ordem sequencial do flange, cruzada)
- Após o prazo final de 24 horas no sentido horário ou anti-horário, gire sequencialmente o flange.

Na tabela abaixo, são fornecidos valores de torque para carreteis metálicos (SDM-1) e wafers metálicos (SDM-4 ou SDM-5). Estes valores consideram que a junta flangeada conecta a bobina a um flange de CLASSE 150. Esses valores são para Juntas Espirais, ASME B16.5.

Diâmetro externo nominal		Orifício do parafuso	Nº de parafusos	Tamanho dos parafusos	Torque recomo parafuso	endado por
(Polegada)	(mm)	(mm)		M	(pé. lb)	(Nm)
3	80	19	4	16	120	163
4	100	19	8	16	120	163
5	125	22,2	8	18	200	271
6	150	22,2	8	18	200	271
8	200	22,2	8	18	200	271
10	250	25,4	12	22	320	434
12	300	25,4	12	22	320	434
14	350	28,6	12	24	490	664
16	400	28,6	16	24	490	664
18	450	31,7	16	27	710	963
20	500	31,7	20	27	710	963
24	600	34,9	20	30	1000	1356

IMPORTANTE:

A Rhosonics não se responsabiliza por nenhum desses valores de torque; esses valores são teóricos. Esses valores de torque de parafuso são apenas diretrizes e se baseiam em condições ideais, flanges perfeitos, alinhamento de flange, bem como parafusos ou porcas novos e bem lubrificados. Os valores de torque se baseiam em flanges com pescoço e parafusos prisioneiros lubrificados com um fator de atrito de 0,16.

Para valores de torque de outras vedações, contate o seu fornecedor de vedações.

2.4 Instalação do Weldolet (SDM-2 ou SDM-3)

Um Weldolet é um pedaço de metal que deve ser soldado a uma tubulação existente. Por favor, siga o procedimento do manual de instruções Weldolet fornecido adicionalmente.

SDM montado em um Weldolet (montagem vertical)

2.5 Instalação do wafer (SDM-4 ou SDM-5)

Os componentes de encaixe devem ser verificados para assegurar a compatibilidade das tolerâncias e acoplamentos. Não use nenhum componente aparentemente irregular ou que não se encaixe corretamente. Entre em contato com o fabricante do produto para determinar a sua usabilidade. Há 2 tipos de wafers:

- Wafers de UHMWPE (Polietileno de Ultra Alto Peso Molecular), também referidos como wafer de HDPE (Polietileno de Alta Densidade), SDM-4 ou SDM-5
- Wafers de metal (ou seja, AISI316, Hastelloy C276 etc.), SDM-4 ou SDM-5

A única diferença entre os wafers de UHMWPE e metálicos é o valor de torque dos parafusos, quando montados em uma tubulação. Este é motivo do wafer de UHMWPE ser mencionado separadamente. O torque dos wafers de metal (SDM-4 ou SDM-5) é igual ao torque do carretel (SDM-1). No capítulo 2.3, consulte as instruções sobre a instalação do carretel para torques de wafers de metal.

Montagem vertical (ex., wafer)

2.5.1 Wafer (UHMWPE)

Material de vedação (wafer de UHMWPE)

CAUTION:

A vedação de juntas de tubulação plástica e flanges metálicos em componentes plásticos requer habilidade, conhecimento e experiência. Dependendo do sistema de tubulação em que o wafer estiver instalado, poderão ser necessários requisitos especiais. Caso não esteja familiarizado com os procedimentos necessários, consulte a pessoa responsável pelo projeto original do sistema de tubulação.

Vedação sem junta

Os flanges de UHMWPE podem ser vedados sem material de vedação. A "memória" de UHMWPE para tubulações cria uma superfície de vedação ideal de face do flange. Ele se transforma em seu próprio "flange de vedação" e veda adequadamente quando não alterado ou torqueado para atender ou exceder o estresse de acomodação do UHMWPE. Quando o torque é devidamente aplicado, a junta entre o wafer (UMMWPE) e o contraflange se tornam autovedantes.

Ao usar esse método, o torque de acomodação especificado precisa ser aplicado, seguido por um retorque obrigatório aplicado de 4 a 24 horas após a conclusão da aplicação de torque inicial. Consulte a tabela a seguir com o torque a ser usado. Observe que esta é uma tabela de torque para flanges de 150 LBS com um wafer de UHMWPE.

Vedação da junta

O segundo método, (com vedação), usa um baixo torque do parafuso de acomodação da vedação, aplicado a uma vedação elastomérica macia, para aplicações de menor pressão (como coleta de gás de aterro ou uso com flanges de fibra de vidro ou PVC com torque limitado), seguido pelo retorque obrigatório aplicado de 4 a 24 horas após o torque inicial.

O material de vedação pode ser PTFE expandido, como Gylon ou um elastômero. Em caso de tubulações com revestimento emborrachado, não é recomendável o uso de outras vedações.

Torque e padrão de aparafusamento

CAUTION:

UM TORQUE ALÉM DO NECESSÁRIO DANIFICARÁ O WAFER. As roscas devem ser limpas e bem lubrificadas. As condições reais do campo podem exigir variações nestas recomendações.

<u>Instruções</u>

- 1. Para conectar às superfícies do flange de UHMWPE, escolha um método para vedação:
 - a. Sem vedação (o UHMWPE forma a sua própria vedação; consulte as seções anteriores)
 - b. Vedação elastomérica completa para espessura de 1/8 pol. ou de 2 a 3 mm. Dureza Shore A de 70.
- 2. Alinhe cuidadosamente as seções da tubulação com o wafer a fim de evitar um estresse na superfície do flange do wafer. Além disso, a tubulação deve ser protegida e apoiada para evitar movimentos que possam criar estresse em excesso e danificar a face do flange.
- 3. Assim que a vedação estiver no lugar, alinhe os orifícios do parafuso do wafer e as faces adjacentes do flange
- 4. Lubrifique ligeiramente e insira todos os parafusos e arruelas, depois coloque as porcas mas sem apertar
- 5. Enumere todos os parafusos para fins de registro
- 6. Antes de aparafusar os flanges, verifique se as faces das superfícies de encaixe estão niveladas na vedação (se houver).
- 7. Com as mãos, aperte as porcas até que se acomodem. Estabeleça uma pressão uniforme sobre as faces do flange ao apertar os parafusos em incrementos de 7 Nm (5 pé-lbs.) até o "Torque inicial mínimo" estabelecido na tabela abaixo, seguindo uma sequência cruzada de oposição de 180°.
- 8. Reacomode após 24 horas e registre todos os valores de torque finais

IMPORTANTE:

Evite "dobrar" o flange ao unir um wafer de UWC em um flange com "ressalto".

Na tabela abaixo, são fornecidos os valores de torque dos wafers da Rhosonics. Estes valores consideram que a junta flangeada conecta o wafer a um flange CLASS 150 de UHMWPE.

Diâmetro (pol.)		Torque inicial mínimo		Torque final máximo	
	Nº de			-	
DE Nom.	parafusos	pé-lbs	Nm	pé-lbs	Nm
2	4	22	30	33	45
2,5	4	26	35	39	53
3	4	30	41	45	61
3,5	8	30	41	45	61
4	8	30	41	45	61
5	8	44	60	66	89
6	8	44	60	66	89
8	8	58	80	87	120
10	12	58	80	87	120
12	12	75	100	113	150
14	12	140	190	210	280
16	16	140	190	210	280
18	16	140	190	210	280
20	20	160	220	240	330
24	20	180	240	270	370
26	24	180	240	270	370
28	28	180	240	270	370
30	28	180	240	270	370
32	28	240	330	360	490
34	32	240	330	360	490
36	32	260	350	390	530
38	32	280	380	420	570
40	36	310	420	465	630
42	36	310	420	465	630
44	40	310	420	465	630
46	40	310	420	465	630
48	44	310	420	465	630
50	44	365	490	550	750
54	44	365	490	550	750
56	48	365	490	550	750
58	48	365	490	550	750
60	52	365	490	550	750

IMPORTANTE:

Estes valores estimados se baseiam em parafusos e prisioneiros não metálicos, usando um K=0,16 para parafusos e porcas levemente lubrificados.

O aparafusamento deve ser feito de acordo com um padrão cruzado. A reacomodação é necessária após 24 horas.

Referência: Torque de parafuso para juntas flangeadas de polietilenoTN-38/julho de 2011, www.plasticpipe.org

2.5.2 Wafer (metálico, ex. AISI 316)

O torque dos wafers de metal (SDM-4 ou SDM-5) é igual ao torque do carretel (SDM-1). Consulte o capítulo 2.3 para torques de wafers metálicos.

2.6 Instalação do SDM no adaptador de processo

O flange do SDM possui 8 orifícios para parafusos, o qual é usado em conjunto com um adaptador de tubulação (Weldolet, SDM-2 ou 3-SDM) ou pode ser encaixado em uma seção de wafer (SDM-4 ou 5-SDM) ou em uma seção de bobina especialmente preparada (SDM-1). A instalação deve ser feita exclusivamente com os seguintes materiais:

- 1. Parafusos de cabeça sextavada, M5x20 mm, AISI 316L, 8 peças.
- 2. Arruelas M5, AISI 316L, 8 peças
- 3. O-ring, Viton, 20,63x2,62 mm, 1 peça
- 4. O-ring, Viton, 29,82x2,62 mm, , 1 peça

O usuário deve sempre assegurar que os materiais usados, principalmente os O-rings, sejam compatíveis com as características do fluido do processo. Os anéis de vedação Viton destinam-se principalmente a aplicações com ácido.

Antes da instalação, verifique o seguinte:

- 1. A porta do Weldolet (SDM-2 ou SDM-3), o adaptador do sensor (SDM-4 ou SDM-5) ou a porta do sensor (SDM-1) em que o SDM é instalado, deve ser cuidadosamente limpo e inspecionado em busca de defeitos na superfície.
- 2. Os O-rings devem ser novos e estar em perfeitas condições de uso. Além disso, o tipo de material dos O-rings deve ser identificado e verificado quanto à compatibilidade com a temperatura do projeto e química. Não reutilize os O-rings, caso contrário, a vedação pode ser comprometida.
- 3. Os sulcos do SDM nos quais os O-rings são instalados devem ser limpos e inspecionados em busca de defeitos na superfície. Antes de inserir os O-rings, um pouco de lubrificante de alto vácuo pode ser aplicado para melhorar a acomodação durante a instalação.
- 4. Os furos roscados no Weldolet (SDM-2 ou SDM-3), no wafer (SDM-4 ou SDM-5) ou na célula de fluxo contínuo (SDM-1), ou os parafusos, devem estar limpos e em perfeitas condições.

Durante a instalação, verifique o seguinte:

- 1. Insira o SDM da forma mais ereta possível, em relação à orientação axial da porta do SDM e posição do visor.
- 2. A orientação da entrada do conduíte deve estar, preferencialmente, para baixo e perpendicular ao eixo da tubulação.
- 3. Aperte os parafusos com 4,2 Nm.
- 4. Não cubra o flange do SDM com material isolante.

2.7 Conexões elétricas do SDM

As principais peças elétricas usadas em todos os modelos são referidas como 9D-series. As peças elétricas específicas de um modelo específico são as peças 3A (SDM).

Fonte de alimentação

Tensão de entrada	18–30 VCC	
Potência máxima de entrada	8 W	
Tensão de ondulação admissível	USS < 1 V	[<100 Hz]
	USS < 10 mV	[100 Hz 10 kHz]

Aterramento protetor

conectar aterramento de segurança >= 4 mm² ao poste de PE do

compartimento

Poste de PE

Cabo de alimentação e prensa-cabo

Incluídos

Prensa-cabo 3–7 mm [diâmetro externo do cabo]

<u>Não incluído</u>

•	2 cabos	s de aço	+,-		[24 V nomin	al]	
	0	Seção cruzada plástico]	do condutor	0,5 2,5 mm²	[fio flexível,	com presilha para	cabo de
	0	Comprimento	[recomendad	o]	<= 10 m	[a 0,50 mm²	/20 AWG]
	0	Comprimento	[perdas de ca	bo em 3%]	33 m	[a 0,50 mm²	/20 AWG]
					49 m	[a 0,75 mm²	/18 AWG]
					66 m	[a 1,0 mm²	/17 AWG]
					98 m	[a 1,5 mm²	/15 AWG]
					164 m	[a 2,5 mm²	/13 AWG]

Dados do HART, com saída de 4-20 mA, cabo de dados e prensa-cabo

<u>Incluídos</u>

•	Prensa-cabo	3–10 mm	[diâmetro externo do cabo]
<u>Não ir</u>	ncluído		
•	Resistência de carga de	50 a 1000 Ω	[incluído cabo com resistência nominal de 250 Ω]
٠	Tamanho mínimo do condutor	0,51 mm/24 AWG	[opera com menos de 1500 m]
٠	Tamanho mínimo do condutor	0,81 mm/20 AWG	[para distâncias mais longas]
•	Comprimento máximo do cabo:	2700 m	[Cap < 70 pF/m]
•	Tipo de cabo	par trançado simples blindagem completa	blindado ou de vários pares com
			[Tampa <= 65 pF/m]
•	Conexão blindada	use aterramento em a ou host	apenas um ponto ou no sistema DCS

Exemplos de cabos:

- Cabo Lapp: 2170220 Unitronic BUS L2/FIP Tamanho = 0,64 mm (22 AWG), DE = 7,8 mm, Tampa = 30 pF/m, Loop_DCR = 115 Ω/km
- Belden: 3079E DataBus ISA/SP-50 Tamanho = 0,64 mm (22 AWG), DE = 8,0 mm, Tampa = 28 pF/m, Loop_DCR = 106 Ω/km

2.7.1 Porta USB

A conexão USB-A está localizada na parte frontal do SDM.

Esta porta USB-A é usada para:

- Atualização de software
- Coleta de dados de log
- Diagnósticos

Porta USB-A na parte frontal e prensa-cabos de entrada de cabo

NOTA:

Os prensa-cabos também podem ser substituídos por um bujão cego (padrão: M16x1,5), se a entrada não for usada.

2.7.2 Conexão com potência de 24 VCC e HART

A conexão para alimentação e Hart está localizada dentro do SDM. Os cabos entram dentro do compartimento do SDM através do(s) (a) prensa-cabo(s). Dentro do compartimento, o cabo é conectado a um conector fixado por parafuso. A imagem abaixo mostra como conectar a alimentação e o HART.

NOTA: Especificação do fusível

- Característica de sopro: Ação rápida
- Corrente do fusível: 630 mA
- Tamanho do fusível: 5 mm x 20 mm
- Tensão nominal VCA: 250 V

Visão traseira do SDM (luz de fundo removida), incluindo as entradas do prensa-cabo

Conexão de 24 VCC e HART no lado traseiro do SDM (detalhe)

2.7.3 Configurações de instalação de HART

O analisador possui uma saída de HART de 4-20 mA ativa.

Isso transforma o dispositivo físico em um Dispositivo de saída de corrente. (Antigo dispositivo de campo Tipo C)

Configuração ponto a ponto no circuito de controle:

Na configuração de hardware de ponto a ponto, os dados são comunicados de forma analógica e digital. O master secundário é o comunicador

Analisador em uma configuração ponto a ponto

2.7.3.1 Conexão fora do circuito de controle:

Para reparo e manutenção, é necessário conectar ao HART enquanto o analisador é desconectado do DCS. O master secundário é conectado através de um resistor de 250 Ω . Ambas as comunicações analógica e digital são possíveis.

Analisador conectado fora do circuito de controle

2.7.3.2 Configuração multidrop:

O analisador pode ser conectado em modo multidrop. Este modo possui algumas restrições, uma vez que é um dispositivo de saída de corrente.

Para manter a corrente no circuito abaixo de 20 mA, não é permitido conectar em modo multidrop mais do que 5 dispositivos ao DCS. O modo de corrente do circuito do SDM deve ser definido como desabilitado e todos os dispositivos devem possuir um endereço de consulta exclusivo.

Analisador conectado em modo multidrop

2.7.4 HART conectando o master secundário ao analisador

O padrão de comunicação digital para DCS é via HART. Ele é usado para alterar a comunicação de configurações e monitoramento com o DCS.

O master secundário pode ser um comunicador HART ou um modem HART conectado a um computador.

Procedimento para o modo ponto-a-ponto:

- Certifique-se de que a DD correta consta no banco de dados do master secundário
- \YOUR_PATH\Library\0060C2\E35D
 ID do fabricante Rhosonics: 0x60C2
 Tipo de dispositivo: 0xE35D
 Nome do tipo do dispositivo: Analisador 9D-series
 Endereço de consulta: 0
- Abra a DD via SDC625, por exemplo.

Estrutura do mapa SDC625 (início)

Procedimento para o modo multidrop:

O analisador é configurado para o modo ponto a ponto.

Para o dispositivo ser colocado no modo multidrop, é necessária uma ação adicional.

- Remova o analisador do circuito de controle conforme descrito na configuração no parágrafo anterior.
- Certifique-se de que a DD correta consta no banco de dados do master secundário ID do fabricante

- Abra a DD via SDC625, por exemplo.
- Certifique-se de que o endereço de consulta 0 está verificado para fazer a conexão.
- Após a conexão ser estabelecida, forneça ao dispositivo um endereço de consulta exclusivo (de preferência, menor que 15).
- Faça isso alterando o endereço de consulta: Configuração do dispositivo->Configuração detalhada->Condição da saída->Saída HART->End. de consulta (Device setup->Detailed setup->Output condition->HART output->Poll addr)

SDC6	25 - [HART output]	- 🗆 🗙
Device View Window Help		- 8 ×
D. (2) 🕼 🕾 🏝 🗗 🔊		
⊡🗗 Online	ltem	Value Units
🖃 🗁 Device setup	🛅 Dynamic Var Mapping	
Process variables	🕘 Poll addr	0
Diag/Service	🕲 Num req preams	5
Hasic setup	🕲 Num resp preams	5
Detailed setup		
Signal condition		
Output condition		
- 🗀 Analog output		
HART output		
Device information		
Review		
Device specific values		
	<	>
SDC-625 (0x60c2) (0xe35d) Dev Rev 01.01	HART Beat	

 Para o modo multidrop, é necessário desativar a saída de corrente: Configuração do dispositivo->Configuração detalhada->Condição da saída->Saída analógica->Modo de corrente do circuito (Device setup->Detailed setup->Output condition->Analog output->Loop current mode).

SD SD	C625 - [HART output]		x
Device View Window Help		-	8 ×
▶ 최 📾 🕸 🖻 호 🌢			
⊡🔁 Online	ltem	Value	Units
🗄 🖓 🛄 Device setup	PV Loop current	10.334	mA
Process variables	🕘 PV Alrm typ	Hi	
⊡ Diag/Service	PV Channel flags	0x00	
🕀 🗁 Basic setup	🖉 Loop current mode	Disabled	
Detailed setup	U Loop test		
F-C Sensors	ው D/A trim		
Signal condition			
Dutput condition			
Analog output			
Review			
1] <		>
SDC-625 (0x60c2) (0xe35d) Dev Rev 01.01		HART Beat	

- O analisador agora pode ser instalado de acordo com a configuração do modo multidrop.
- Ao reconectar o master secundário, certifique-se de que o endereço de consulta correto foi verificado.

2.7.5 Conexão da porta USB a um computador

Procedimento para conectar o analisador a um computador usando a porta USB na parte frontal

- Conecte a porta USB a um computador de manutenção (use um cabo USB-A macho-macho)
- Para evitar problemas na comunicação, recomendamos colocar o dispositivo no modo de proteção contra gravação HART. Isso é definido através do visor no sensor.
- Navegue até a Função de verificação (Check Function) no analisador
- Código de aceso: 1802 necessário
- Defina a Função de verificação (Check Function) como Ativa (On); a tela fica laranja

Resultado da Função de verificação (Check Function) definido como Ativa (On)

- Acesse o Gerenciador de Dispositivos no computador.
- A AT91 agora está presente na porta-COM (computador)

4	Device Manager 🛛 🗖 📄	<
File Ad	tion View Help	
🔺 🚔 Di	ELLDVDDS42	^
⊳ 4	Audio inputs and outputs	
Þ 🖳	Computer	
Þe	Disk drives	
	Display adapters	
▷≝	DVD/CD-ROM drives	
⊳05	Human Interface Devices	
	Keyboards	
▷ 특	^r LadderComOp2 - serial port emulators	
⊳ 8	Mice and other pointing devices	
	Modems	
	Monitors	
⊳ 🖳	Network adapters	
	Portable Devices	
▲ 🦷	Ports (COM & LPT)	
	AT91 USB to Serial Converter (COM5)	
	Communicatiepoort (COM1)	
⊳ 6 <u></u>	Print queues	
	Processors	
	Security devices	
⊿ ⊠	Sensors	
	Microsoft Visual Studio Location Simulator Sensor	
	Software devices	
	Sound, video and game controllers	
ÞŞ	• Storage controllers	~
	Notem devices	

Gerenciador de dispositivos. USB AT91 na porta-COM 5 (COM5)

• Inicializar Rhosonics_SA _9D_##_##.exe

• A conexão é feita entre o sensor e o programa de manutenção. Sempre que a luz verde estiver ligada, e a ressonância estiver visível entre as barras vermelhas.

3. Operação

3.1 Introdução

As operações do analisador podem ser divididas em 3 opções, cada uma com sua própria interface de usuário:

- Para operações na tela de LCD, consulte o capítulo 3.2
- Para operações via HART, consulte o capítulo 3.3
- Para operações via porta USB, consulte o capítulo 3.4

A escolha de cada interface de usuário depende do tipo de usuário.

A instalação é a seguinte:

Visão geral da operação com: tipo de interface de usuário, tipo de usuário e nível de acesso

3.1.1 Funcionalidade por interface de usuário

Cada interface de usuário possui um conjunto diferente de funções. Elas são classificadas com base no nível de acesso e acessibilidade de cada tipo de interface de usuário.

	Disponível via			
Funcionalidade	Botão/LCD	DD do	Dispositivo	Interface
		HART	USB	USB*
Medições	•		•	
Valores de medição digital	✓	\checkmark		✓
Saída mA		\checkmark		\checkmark
Configurações		-		
Alteração manual das configurações do sensor		✓		
Média de saídas (tempo de	\checkmark	\checkmark		\checkmark
decaimento/amortecimento)				
Seleção de líquido	\checkmark	✓		
Configuração dos valores de saída (tipo e	\checkmark	\checkmark		\checkmark
intervalo)				
Carregamento das configurações a partir de um				\checkmark
arquivo				
Carregamento de calibração de líquido				✓
Ajuste do relógio de tempo real	✓	✓		
Configuração da luz de fundo	\checkmark			
Calibração		-		
Calibrações de fábrica				✓
Calibrações de amplitude e deslocamento locais	✓	\checkmark		
Calibração de saída mA		\checkmark		✓
Redefinição da calibração local	\checkmark	\checkmark		\checkmark
Diagnóstico				
Estado NAMUR	\checkmark	\checkmark		
Código de erro geral	\checkmark			\checkmark
Valores medidos de diagnóstico		\checkmark		\checkmark
Mapa de status condensado (HART)		\checkmark		
Monitoramento por ressonância em tempo real				\checkmark
Gravação de dados de log			\checkmark	
Carregamento de líquidos				\checkmark
Carregamento de firmware			\checkmark	
Salvar configurações			\checkmark	
Log de erros			\checkmark	
Leitura do local do dispositivo de gravação		\checkmark		
Leitura das informações da versão		\checkmark		\checkmark
Leitura do tipo do modelo		\checkmark		\checkmark

* Somente para distribuidores

3.2 Tela de LCD

3.2.1 Tela de LCD para operação do programa

A tela de LCD, juntamente com os botões, suporta uma funcionalidade de nível de acesso baixo. Devido a sua localização, próxima ao processo, é possível fazer calibrações básicas. Uma vez que a recuperação de dados de log passa pelo dispositivo USB, é possível definir a data e a hora dos valores do carimbo de data/hora durante o log, bem como a definição do intervalo de log.

Um status de sistema menor exibe o erro mais relevante em caso de problemas de medição. Para assegurar que as configurações só possam ser alteradas por pessoas autorizadas, a maioria dos menus encontra-se oculta atrás de um nível de acesso.

- Segundo botão: •
- Terceiro botão: •
- Quarto botão:

Para baixo Aceitar ou Menu principal Voltar/Nível de página superior (consulte a programação 3.2.1)

Se as cores do botão estiverem invertidas (somente o primeiro e o segundo botão) significa que este botão foi usado por último.

3.2.3 Status analisador

O status do dispositivo é exibido de acordo com a recomendação NAMUR NE107. Cada cor de luz de fundo e ícone descreve um status diferente.

Ao pressionar um botão do sensor, a tela sai do modo de espera para o ativo. Se o botão não for pressionado por um certo período, a tela será desligada.

NOTA: As variáveis indicadas podem ser diferentes para o seu analisador.				
Ativo	Intervalo			
Start Page 21 SG*1000 1101.32 Temperature 21.04 °C SG*1000 1101.32 delta C 0.00 m/s	sg*1000 2 1100.01			
Desbloqueado (Acesso local)	Desbloqueado (Acesso local)			
Operação normal	Operação normal			
 O dispositivo está operando dentro do intervalo especificado A saída é válida A cor da luz de fundo é verde 	 O dispositivo está operando dentro do intervalo especificado A saída é válida A cor da luz de fundo é verde 			
Start Dana 91				
Start Page 1 SG*1000 1100.61 Temperature 21.15 °C SG*1000 1100.61 delta C 0.00 m/s	sg*1000 1090.47			
Bloqueado (Acesso remoto)	Bloqueado (Acesso remoto)			
Advanced Function				
	No Intervalo, o nível de acesso será redefinido			
NIVEI de acesso 2	para o nivel 1.			

Substituir o dispositivo	Substituir o dispositivo
O ícone no canto superior direito e a luz de	Luz de fundo em vermelho. O ícone e os valores
fundo são alterados para vermelho.	de medição estão alternando.

3.3 Operação via HART

O padrão de comunicação digital para DCS é via HART.

A estrutura da DD é composta por pastas padrão de DDs do HART que são:

- Variáveis de processo (Process variables)
- Diag/Manutenção (Diag/Service)
- Configuração básica (Basic setup)
- Configuração detalhada (Detailed setup)
- Análise (Review)

Há também pastas específicas para o analisador:

• Valores específicos do dispositivo

	SDC625 - [HART output]	- 🗆 ×
Device View Window Help 日 ② ● ② ● ② ● ② ● ② ● ③ ● ③ ● ③ ● ③ ● ③ ●		_ 8 ×
Online Device setup Process variables Online Process variables Online Diag/Service Online Detailed setup Review Online Device specific values	Item Process variables Diag/Service Basic setup Detailed setup Review Device specific values <	Value Unit
SDC-625 (0x60c2) (0xe35d) Dev Rev 01.01		🕥 HART Beat 🛛 🦯

As variáveis de processo mostram os valores de saída.

Todas as configurações e os valores medidos são visíveis nas variáveis do analisador

3.4 Porta USB

A porta USB-A é usada para:

- Atualização de software
- Salvar configurações e dados de log (consulte o capítulo 7.1.4)
- Conectar-se ao aplicativo de manutenção no notebook através de um cabo USB

3.4.1 Atualização de software

O procedimento para atualização do software:

- Desligue o analisador
- Insira um dispositivo USB com o software mais recente e o arquivo bootscript.img
- Ligue o analisador
- Aguarde alguns segundos
- Desconecte o dispositivo USB

O analisador foi atualizado.

3.4.2 Aplicativo de manutenção da Rhosonics (Rhosonics SA 9D)

O aplicativo de manutenção da Rhosonics possui cinco abas

Principal (Main), Configurações (Settings), Líquido (Liquid), Calibração (Calibration) e Diagnósticos (Diagnostics).

4. Configuração

4.1 Introdução

As configurações do analisador podem ser divididas em 3 opções.

- Para operações na tela de LCD, consulte o capítulo 4.2
- Para operações através da comunicação HART, consulte o capítulo 4.3
- Para operações via porta USB, consulte o capítulo 4.4

4.2 Tela de LCD

Através da tela de LCD, é possível realizar diversas configurações. Após o analisador ser iniciado, a primeira página exibida é a *Página inicial* (Start Page).

NOTA:

Exceto para as páginas *Página inicial* (Start Page), *Valor medido* (Measured Value) e *Tempo de decaimento* (Decay Time), será necessário um *Código de acesso* (Access Code) mais elevado; consulte o capítulo 4.2.4.

4.2.1 Página inicial/Valores medidos (Start page/Measured Values)

A *Página inicial* (Start Page) contém apenas quatro valores. Estes quatro valores são os valores da comunicação HART.

Caso queira exibir todos os valores, acesse as páginas *Valores medidos* (Measured Values). Primeiro acesse o *Menu principal* (Main Menu) e, em seguida, a página *Valores medidos* (Measured Values).

Home Page	3 1	Measured Values 31
SG*1000 Temperature ZL N/A	1005.5 20.00 °C 1487.9 kRayl 0.000 -	SG(x1000) N/A 0.000 - Temperature 20.00 °C Density 1003.6 g/l
	\checkmark	

• Pressione 🗸 para acessar o *Menu principal* (Main Menu).

IMPORTANTE:

Se você estiver no modo Time Out (Intervalo), pressione qualquer tecla para acessar a *Página inicial* (Start Page).

4.2.2 Menu principal (Main menu)

No Menu principal (Main menu), é possível escolher entre 5 opções:

- Valores medidos (Measured Values)
- Tempo de decaimento (Decay Time)
- Luz de fundo (Back-light)
- Linhas de exibição (Display lines)
- Função avançada (Advanced Function) (é necessário um Código de acesso [Acess Code] superior)

4.2.3 Tempo de decaimento (Decay time)

A suavização é altamente recomendável, pois o dispositivo passa a ter maior precisão. Além disso, mudanças rápidas na concentração são atenuadas, por isso o valor de saída fornece uma melhor indicação do valor "em massa" do líquido. Se uma resposta rápida não for necessária, recomendamos ajustar o *Tempo de decaimento* (Decay Time) entre 5 e 20 segundos. Uma vez que a suavização afeta o tempo de resposta, a melhor configuração é uma compensação entre a precisão e o tempo de resposta.

Recomendamos um Tempo de decaimento (Decay Time) de 5 segundos para a maioria das aplicações.

4.2.4 Luz de fundo (Back-light)

A luz de fundo muda conforme o status do analisador. Determinados status podem enfraquecer a cor da luz de fundo. É possível definir a luz de fundo para o modo em preto e branco a fim de assegurar, independentemente do status, a exibição da tela.

4.2.5 Linhas de exibição (Display Lines) (não aplicável ao SDM)

Neste momento, não há nenhuma medida adicional relevante a ser exibida. Recomendamos deixar o número de linhas de exibição como está.

4.2.6 Código de acesso (Access Code)

Para inserir a *Função avançada* (Advanced Function) e todas as funções, após a página *Função avançada* (Advanced Function) é exigido um *Código de acesso* (Access Code) superior. O *Código de acesso* (Access Code) para o nível 2 é *1802*.

Para inserir este Código de acesso (Access Code), siga o procedimento abaixo:

- Na Página inicial (Start Page), pressione 🗸
- Em Menu principal (Main Menu), role até Função avançada (Advanced Function) usando os botões e .
- A página *Código de acesso* (Access Code) será aberta em uma janela pop-up, caso ainda não esteja no *Código de acesso 2* (Access Code 2)
- Após inserir o Código de acesso (Access Code), pressione o botão 🗸 .
- A página *Função avançada* (Advanced Function) é exibida na tela.

4.2.7 Função avançada (Advanced Function)

Na página Função avançada (Advanced Function), é possível escolher entre seis opções:

- Menu de diagnóstico (Diagnostics Menu), consulte o capítulo 7
- Menu de calibração (Calibration Menu), consulte o capítulo 5
- Menu de líquido (Liquid Menu)
- Proteção contra gravação (Write protect)
- Verificação de função (Check Function)
- Intervalo de saída mA (Output mA Range)

4.2.8 Proteção contra gravação (Write protect)

A proteção contra gravação é usada para desabilitar os comandos de gravação via HART; os comando de leitura ainda continuam funcionando.

4.2.9 Menu de líquido (Liquid Menu) (não aplicável ao SDM)

Neste ponto, não há nenhum líquido para o SDM. Recomendamos manter as configurações do líquido como estão.

4.2.10 Verificação de função (Check Function)

A Verificação de função (Check Function) pode ser usada para duas finalidades:

- Ao usar o HART, o DCS é avisado de que o analisador está em manutenção/reparo, portanto, os valores enviados ao DCS podem estar incorretos.
- Outra função é configurar a porta-COM para um computador de manutenção

4.2.11 Intervalo de saída mA (Output mA range)

A configuração do *Intervalo de saída mA* (Output mA range) é usada para atribuir o valor correspondente ao intervalo de 4 e 20 mA da saída analógica. Consequentemente, o analisador (e a saída mA) entrará no status fora de especificação quando o valor medido sair desse intervalo. As telas abaixo mostram as páginas onde os valores de intervalo superior e inferior podem ser definidos.

4.3 Comunicação HART

Para definir a configuração do HART, será necessário um programa chamado *DD edit* (Edição de DD) Com este programa é possível configurar a comunicação HART.

Mesmo sem usar o HART, ainda há a possibilidade de usar a saída de 4–20 mA do HART. Portanto, só é preciso configurar a Variável primária.

Isso é descrito neste capítulo.

O HART possui quatro saídas digitais padrão, ou seja:

- Variável primária PV
- Variável secundária SV
- Variável terciária TV
- Variável quaternária 4V

NOTA:

O sinal analógico (saída de 4–20 mA) é o mesmo da Variável primária. Isto deve ser definido corretamente, independentemente de o cliente usar ou não o HART.

4.3.1 Ajuste da Variável primária/Atribuição de saída de 4–20 mA

É possível atribuir 4 variáveis à comunicação HART, elas são referidas como Variáveis dinâmicas. A primeira é referida como Variável primária (PV), cujo valor é atribuído ao análogo de 4–20 mA. Todos as 4 variáveis dinâmicas (PV, SV, TV e 4V) podem ser obtidas digitalmente através de um DCS com suporte para HART.

É possível escolher entre nove variáveis padrão:

- Variável de dispositivo 0: Concentração 1
- Variável de dispositivo 1: Concentração 2
- Variável de dispositivo 2: Velocidade do som
- Variável de dispositivo 3: Temperatura
- Variável de dispositivo 4: SGX1000
- Variável de dispositivo 5: Impedância acústica
- Variável de dispositivo 6: Sólidos
- Variável de dispositivo 7: Ressonância líquida da alimentação
- Variável do dispositivo 8: Condutividade

NOTA:

É possível que o modelo de analisador específico não meça uma Variável de dispositivo específica. Nesse caso, não é recomendável selecionar esta Variável de dispositivo.

Procedimento:

- Conecte o master secundário ao analisador
 - Certifique-se de que a DD correta consta no banco de dados:
 - \YOUR_PATH\Library\0060C2\E35D
 - (ID do fabricante = 0x60C2)
 - (ID do dispositivo = 0xE35D)
- Abra Analyzer.ddl
- Crie a DD [Ctrl + M]
- Execute [Ctrl + F5]
- O SDC625 é aberto

Estrutura do mapa SDC625 (início)

- Abra o mapa Mapeamento de variável dinâmica (Dynamic Var Mapping) (Online→Configuração do dispositivo [Device Setup] → Configuração detalhada [Detailed setup] → Condição de saída [Output condition] → Saída HART [HART output] → Mapeamento de variável dinâmica [Dynamic Var Mapping])
- Clique duas vezes em PV é (PV is), SV é (SV is), TV é (TV is) ou QV(=4V) é (QV[=4V] is)

	SDC625 - [Process variables]	- 5	× د
I. Device View Window Help			- 5 ×
D 2 4 4 2 4 2 4			
⊡⊉ Online	Item	Value Units	
🖻 💼 Device setup	PV is	Specific Gravity	
Process variables	စည် SV is	Temperature	
Diag/Service	🕲 TV is	Specific Gravity	
🕀 💼 Basic setup	© QV is	Temperature	
🖃 🗁 Detailed setup	DV/ ic	×	
🕀 💼 Sensors	FV IS		
···· 🗀 Signal condition	Casalita Cravity		
🗇 🗁 Output condition	Specific dravity		
Analog output	Specific Gravity	▼	
HART output			
Dynamic Var Mapping			
⊡ Device information	Set Lar	ncel	
Review			
🗄 💼 Device specific values	L		
SDC-625 (0x60c2) (0xe35d) Dev Rev 01.01	1	O HART Beat	NUM //

A PV é configurada no mapa de Mapeamento de variável dinâmica (Dynamic Var Mapping)

• Escolha a variável para PV é (PV is), SV é (SV is), TV é (TV is) ou QV(=4V) é (QV[=4V] is)

4.3.2 Configurar saída de 4–20 mA

Este procedimento é para especificar a saída de 4–20 mA.

- O PV LRV (Valor de intervalo inferior da variável primária) corresponde a 4 mA
- O PV URV (Valor de intervalo superior da variável primária) corresponde a 20 mA
- O PV Alrm typ (Tipo de alarme de variável primária) é o modo de reação de erro
- O *Modo de corrente do circuito* (Loop current mode) precisa ser *Ativado* (Enabled) (*Desativado* [Disabled] no Modo multidrop)

- O Teste de circuito (Loop test) define a saída para um valor definido
- O Ajuste de D/A (D/A trim) ajusta os valores inferior e superior em nível digital

Configuração do valor inferior e superior

- Abra a condição Mapear Sinal (Map Signal) (Online→Configuração do dispositivo [Device Setup]
 → Configuração detalhada [Detailed setup] →Condição do sinal [Signal condition])
- Ajuste o valor de *PV LRV* (ex., SGx1000 = 800)
- Ajuste o valor de PV URV (ex., SGx1000 = 1800)

Device View Window Help Device setup Porces variables Device setup Diag/Service Signal condition Signal condition PV URV Signal condition PV URV Souce units Value Units Volue Units Volue Units PV URV Souce Signal condition PV URV Souce Signal condition PV URV Souce PV URV Souce Signal condition PV URV Souce Signal condition PV URV Souce Set		SDC625 - [Process var	iables]		- 🗆 🗙
Image: Second	I Device View Window Help				_ <i>8</i> ×
Bonine Value Units Device setup PV URV 800.000 Diag/Service PV URV 2000.000 Basic setup PV URV 0.000 s Detailed setup PV URV 0.000 s Signal condition PV URV 0.000 s Device information Write As One Value Public setup Value Units Device information Write As One Value Public sepecific values PV URV 2000.000 PV URV 2000.000 PV URV Sequence PV URV 2000.000	D. 21 ar 24 29 - 21 21 2				
Device stup PV URV Review Device specific values	⊡-🛱 Online	Item	Value	Units	
Process vanables Dediled setup PV % vrige October 1 Detiled setup PV Write As One Value Units Ok PV URV 800.000 PV URV 800.000 PV URV 2000.000 Set Cancel	⊡ ·· 🛄 Device setup	PV LRV	800.000		
Basic setup Detailed setup Signal condition Output condition Device information Review Device specific values Wao List Value Units Value Units Value Units </td <td>Process variables Diag/Service</td> <td>PV % rnge</td> <td>0.531</td> <td>%</td> <td></td>	Process variables Diag/Service	PV % rnge	0.531	%	
Detailed setup Sensors Signal condition Output condition Review Device information Review Device specific values Value Units Value Un	Basic setup	PV Xfer fnctn	Linear		
Sensors Signal condition Device information Review Device specific values Value Units Value Units Value Units Value Units Value Units Value Units Value Units Value Units Value Units Value Units Set Cancel	Detailed setup	PV Damp	0.000	5	
Image: Construction	E-C Sensors			x	
Wao List Device information Review Device specific values Wao List Value Units Value Value Val	Signal condition	write As One			
Review Information Review Device specific values Value Units OK	⊡ Output condition □ Device information □ Wa	o List			
Device specific values		em Value Units	ОК		
2000.000 PV URV 18/0.000 Set Cancel	Device specific values	PV LRV 800.000			
< <p>PV URV 1800.000 Sel Cancel</p>	2	PV URV 2000.000			
Image: Concel					
1800.000 Set Cancel	<	PV UF	X ×		
1800.000 Set					
1800.000 Set					
Sęt Cancel		1800.000			
Set Cancel					
		Set	Cancel		
]					
SDC-625 (0x60c2) (0xe35d) Dev Rev 01.01	SDC-625 (0x60c2) (0xe35d) Dev Rev 01.01	1	Он	IART Beat	NUM //

Saída de 4-20 mA com valor baixo e alto

Configuração da condição da saída analógica

- Abra a condição Mapear Sinal (Map Signal) (Online→Configuração do dispositivo [Device Setup]
 → Configuração detalhada [Detailed setup] →Condição da saída [Signal condition]→Analog output [Saída analógica])
- Configure o modo como Tipo de alarme PV (PV Alrm typ) (escolha entre Alto [Hi], Baixo [Lo], Manter último valor [Hold last value] ou Nenhum [None])
- Ajuste o modo de corrente do circuito como Enabled (Ativado)
- Use o *Ajuste de D/A* (D/A trim) para o ajuste preciso do valor 4 mA e 20 mA de forma digital. Após este ajuste, deve-se realizar um desligamento e um religamento.

SD SD	C625 - [Process variables]	- 🗆 🗙
Device View Window Help		_ 8 ×
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
⊡🗗 Online	Item	Value Units
🖻 💼 Device setup	PV Loop current	15.715 mA
Process variables	🕘 PV Airm typ	Hi
Diag/Service	PV Channel flags	0x00
🖶 🗀 Basic setup	Loop current mode	Enabled
Detailed setup	U Loop test	
E Sensors	الم D/A trim	
Signal condition		
Output condition		
- 🗁 Analog output		
HART output		
Dynamic Var Mapping		
Device information		
Review		
Device specific values		
	<	>
SDC-625 (0x60c2) (0xe35d) Dev Rev 01.01		HART Beat

Condição da saída analógica

4.4 Carregar e ler configurações através do aplicativo de manutenção

O carregamento dos dados do sensor e das configurações é realizado na fábrica e somente será necessário se algumas configurações precisarem ser alteradas e não constarem no visor.

ettin	gs			Senso	or data Acc	ess Code	J 0
	Description	File	Analyzer		Description	File	Analyzer
				()		0	0
A) 13		0	0				
	[====						
				() o		0	0
<u>/</u> 7)6			0				
.oad	settings	Rea	d setting	Load	sensor data	Read sei	nsor dat
etting	us loaded	<u></u>		Senso	or data loaded	/	

Configurações carregadas

1 Configurações de carregamento

Para as configurações de carregamento, o arquivo SETTING.CSV deve estar exatamente no local abaixo:

C:\Users\"USERNAME"\Documents\LabVIEW Data\ ("USERNAME" é o nome do usuário Windows que está conectado.)\ Se este local não existir, crie-o.

- Pressione Configurações de carregamento (Load settings)
- Se a lâmpada de *Configurações carregadas* (Settings loaded) estiver verde, isso significa que as configurações foram carregadas

2 Configurações de leitura

Para as configurações de leitura, o arquivo SETTING.CSV deve estar exatamente no local abaixo:

C:\Users\"USERNAME"\Documents\LabVIEW Data\

Neste caso, os arquivos são necessários para obter a descrição das configurações. Se este local não existir, crie-o.

- Pressione *Configurações de leitura* (Read settings)
- Se os valores e descrições no analisador estiverem visíveis e a coluna do arquivo estiver cinza, isso significa que as configurações estão sendo lidas no analisador

3 Carregar dados do sensor

NOTA:

Recomendamos o procedimento descrito no capítulo 6 sobre manutenção!

Para as configurações de carregamento, o arquivo 3ASENSOR.CSV deve estar exatamente no local abaixo:

C:\Users\"USERNAME"\Documents\LabVIEW Data\ ("USERNAME" é o nome do usuário Windows que está conectado.)\

Se este local não existir, crie-o.

- Pressione Configurações de carregamento (Load settings)
- Se a lâmpada de *Configurações carregadas* (Settings loaded) estiver verde, isso significa que as configurações foram carregadas

4 Ler dados do sensor

Para as configurações de leitura, o arquivo 3ASENSOR.CSV deve estar exatamente no local abaixo:

C:\Users\"USERNAME"\Documents\LabVIEW Data\ ("USERNAME" é o nome do usuário Windows que está conectado.)\

Neste caso, os arquivos são necessários para obter a descrição das configurações.

Se este local não existir, crie-o.

- Pressione *Configurações de leitura* (Read settings)
- Se os valores e descrições no analisador estiverem visíveis e a coluna do arquivo estiver cinza, isso significa que as configurações estão sendo lidas no analisador

Alterando os valores primário, secundário, terciário e quaternário da saída HART

- Abra o arquivo "SETTING.csv".
- Altere os valores para "primary/secondary/ternary/quartinary dynamicVarConfig"; todas as quantidades disponíveis foram incluídas no arquivo csv
- Salve o arquivo (mantenha a extensão .csv)
- Pressione *Configurações de carregamento* (Load settings)
- Se a lâmpada de *Configurações carregadas* (Settings loaded) estiver verde, isso significa que as configurações foram carregadas

Os valores primário, secundário, terciário e quaternário de saída HART agora estão definidos.

4.5 Carregar e ler as configuração do líquido através do aplicativo de manutenção (nenhum líquido disponível para o SDM)

Neste ponto, não há nenhum líquido para o SDM. Recomendamos manter as configurações do líquido como estão.

TELA DE LCD DE CALIBRAÇÃO

5. Tela de LCD de calibração

5.1 Menu de calibração (Calibration Menu)

No Menu de calibração (Calibration Menu), é possível escolher entre três calibrações:

- Temperatura (Temperature)
- S.G. X 1000
- Campo (Field)

5.1.1 Ajuste de temperatura

Na página *Menu de deslocamento* (Offset Menu) da temperatura, a temperatura fixa atual é exibida. A temperatura deve ser igual à temperatura média do processo e pode ser definida ao alterar o deslocamento. A temperatura deve ser de ± 5 °C da temperatura de processo real.

- Insira o *Deslocamento* (Offset) de temperatura usando os botões e .
- Após inserir o *Deslocamento* (Offset), pressione o botão 🗸 .

Offset Menu	1	1 2
Temperature Offset	21.00 +00.0	° °
\rightarrow	\checkmark	Û

5.1.2 Calibração de S.G. X 1000

Na página S.G. x 1000 é possível calibrar o Deslocamento (Offset) e a Amplitude (Span).

TELA DE LCD DE CALIBRAÇÃO

TELA DE LCD DE CALIBRAÇÃO

Página Menu de deslocamento (Offset Menu):

O deslocamento desloca a SGx1000 indicada até o valor desejado, sem influenciar a sensibilidade.

- Insira o *Deslocamento* (Offset) de *S.G x 1000* usando os botões e →.
- Após inserir o *Deslocamento* (Offset), pressione o botão 🗸 .

Offset me	1 1 2	
SGx1000 Offset	958.25 0 0 00.	
\rightarrow		

Página Menu de amplitude (Span Menu):

Em algumas aplicações, a sensibilidade do SDM fica muito alta ou muito baixa. Nesses casos, a amplitude precisa ser ajustada. A forma correta de configuração do fator de amplitude foi descrita anteriormente neste capítulo.

Portanto, não é necessário entender completamente esta explicação.

Ao alterar a amplitude, obtém-se o resultado esperado da calibração

- Após inserir a Amplitude (Span), pressione o botão 🗸 .

Span Menu		9 2
SGx1000 Span	992.56 1.000	
\rightarrow	\checkmark	Ú

5.1.3 Calibração de campo

A calibração de campo não afeta o SDM.

MANUTENÇÃO

6. Manutenção

6.1 Como substituir ou montar um sensor

Como desmontar, em preto Como montar, em azul

Certifique-se de seguir este procedimento. O procedimento de (des)montagem incorreto pode danificar o SDM definitivamente, especialmente os contatos acionados por mola na parte do sensor.

Sensor montado em um wafer/bobina/Weldolet

Desmontagem: solte os 8 parafusos M5x16/Montagem: aperte os parafusos com 4,2 Nm

MANUTENÇÃO

Desmontagem: remova o sensor da tubulação (adaptador)/Montagem: coloque o sensor na tubulação (adaptador)

Desmontagem: remova as porcas da abraçadeira TC/Montagem: aperte as porcas na abraçadeira TC com 25 Nm

MANUTENÇÃO

Desmontagem: remova a abraçadeira TC/Montagem: coloque a abraçadeira TC

Desmontagem: separe o sensor e o compartimento; tenha cuidado com os pequenos contatos acionados por mola na parte do sensor/Montagem: conecte o sensor e o compartimento; tenha cuidado com os pequenos contatos acionados por mola na peça do sensor

Desmontagem: remova os parafusos M5x16 e as arruelas M5/Montagem: coloque os parafusos M5x16 e as arruelas M5

6.2 Atualizar configurações do sensor após substituição

- Coloque o dispositivo USB com as configurações do sensor 3ASENSOR.CSV no analisador.
- Carregue as configurações do sensor fornecidas com ele no analisador através das configurações de carregamento do sensor no menu de diagnóstico.
- Verifique se o número de série do sensor está correto após a atualização (verifique a etiqueta)
- O sensor é calibrado e instalado

7. Diagnóstico e Manutenção

7.1 Menu de diagnóstico (Diagnostics Menu)

No Menu de diagnóstico (Diagnostics Menu) é possível escolher entre seis opções:

- Menu de Log (Logging Menu)
- Apagar log (Erase log)
- Status do sistema (System Status)
- Ajustar o relógio (Set Clock)
- Restaurar Calibração (Restore Calibration)
- Carregar as configurações do sensor (Load sensor settings) (consulte o capítulo 6, Manutenção)

Diagnostics I	Menu	3 2
Logging	g Menu	
Erase L Systen Set Clo	log n Status ock	5
•	<	Ů

Diagnos	stics N	Menu	9 2
E	Frase L	og	
System Status			
Set Clock			
F	Restore	e Calibra	ation
		\checkmark	ţ,

7.1.1 Status do sistema (System Status)

Nesta página, você encontrará o status do analisador.

- Se o analisador estiver sendo executado corretamente, Operação Normal (Normal Operation) será exibida.
- Se o analisador não estiver mais operando corretamente, ele mostrará o erro e as informações sobre esse erro.

7.1.2 Restaurar calibração (Restore Calibration)

Preparações

Antes de começar, leia esta seção com atenção!

Nesta página é possível restaurar todas as calibrações para as calibrações de fábrica.

Preste atenção antes de pressionar
. Se aceito, todos os ajustes, calibrações e configurações serão perdidos e redefinidos para os ajustes de fábrica.

7.1.3 Ajustar data e hora

Nestas páginas, é possível definir a data e a hora.

7.1.4 Log e configurações para diagnóstico e avaliação

Esta é a forma correta de solucionar o problema:

- 1. Verifique o Status do sistema (System Status) e informe a Rhosonics ou o distribuidor
- 2. Salve um arquivo de log e as configurações do analisador e envie-os para a Rhosonics ou para o distribuidor
- 3. Somente restaure as configurações de fábrica caso essa seja a orientação da Rhosonics.

*Um arquivo de log é iniciado automaticamente quando a energia é ligada.

Para resolução de problemas ou para a sua própria avaliação de diagnóstico, é possível salvar um arquivo de log.

Se este arquivo de log for armazenado no dispositivo USB, todas as configurações do analisador também serão armazenadas. Dessa forma, as configurações do analisador poderão ser interpretadas pela fábrica.

A página Menu de log (Logging Menu) possui duas funções:

- O *Tempo de amostra* (Sample Time) pode ser definido. É possível escolher entre os seguintes tempos de amostra *1, 2, 5, 10* ou *30 segundos, 1, 2, 5* ou *10 minutos*. Lembre-se de que o arquivo de log possui espaço para 65.535 entradas.
- Ao selecionar Obter dados (Get data), a data de log é gravada no dispositivo USB

Logging Menu	u 1 2
25/FEB/2007	14:09:17
Sampling time: 5 Seconds	Get data OK
	↓ 1

7.1.5 Coletar dados de log usando USB

Após abrir a tela de dados de log, é exibida uma solicitação para conectar o dispositivo USB. Insira o dispositivo USB, e o analisador verificará o dispositivo automaticamente.

O dispositivo USB é verificado. Em seguida, são salvas as ressonâncias, as configurações e os valores medidos. A conclusão leva cerca de 20 segundos. Em caso de falha, o visor o notificará a respeito.

Depois disso, o log é recuperado da memória de log. Este processo levará vários minutos. O *carregamento de dados* (loading data) piscando e a barra de progresso sendo atualizada indicam que o

processo de salvamento de dados está em andamento.

Após salvar os dados, a mensagem *carregamento completo* (loading complete) é exibida. Agora você já pode sair desta página e remover o dispositivo USB.

A tabela abaixo mostra os arquivos

O arquivo com a ressonância da interface começa com a letra "I" seguida pela data.

A tabela a seguir fornece uma explicação sobre os nomes dos arquivos:

Nome do arquivo	Descrição
L"YYMMDD".txt	Log
E"YYMMDD".txt	Relatório de erro/status
I"YYMMDD".txt	Ressonância da interface
M"YYMMDD".txt	Todos valores medidos no momento de "Obter Log" (Get Log)
RLS-FILE.csv	Calibração de líquido no analisador (Carregável para
	distribuidores)
S"YYMMDD".txt	Configurações (Não carregáveis)
SETTING.csv	Configurações (Carregáveis para distribuidores)
3ASENSOR.csv	Configurações e calibração do sensor

7.1.6 Apagar log (Erase Log)

O dispositivo está permanentemente em log. A vantagem é que após um erro de medição incidental, é possível recuperar o log.

Ao iniciar um teste, é possível apagar os dados já presentes no analisador.

8. Calibração de distribuidores através do aplicativo de manutenção

As calibrações variam conforme o modelo.

As seguintes calibrações atendem a todos os modelos:

- Ajuste de mA (mA trimming)
- Temperatura (Temperature)

Estas calibrações de fábrica também podem ser feitas por distribuidores treinados.

n 🥂 Rhosonics SA 9D.vi —	×
Main Settings Liquid Calibration Diagnostics V 05 . 03 STOP	
Type of calibration	
mA Out 8.03371 mA trimming	
Temperature 20 Set Temp	
SG x 1000 1004.27 SG Offset SG span	

Página Calibração (Calibration)

8.1 Ajuste de mA (mA trimming)

Para a realização de um ajuste de mA, é necessário um medidor de mA calibrado. O SDM é calibrado na Rhosonics. Uma instrução passo a passo é fornecida no aplicativo de manutenção através de diversos pop-ups.

G.	mA Trimming.vi	×	G.	mA Trim	iming.vi	×
	Connect reference mA meter			Enter reference v	alue	
	OK Cancel]		Reference mA	mA Send 4 Cancel	

8.2 Temperatura (Temperature)

Verifique se a temperatura está sendo lida regularmente e execute uma calibração quando o erro de leitura exceder 5 °C. Recomendamos configurar a temperatura ajustada com um sensor calibrado, pois outros sensores de temperatura no mesmo processo podem não ser tão precisos ou não representarem a temperatura no local de instalação da sonda. O SDM não mede a temperatura. O valor para o deslocamento é a temperatura. Na verdade, a temperatura do SDM é uma configuração.

• Pressione o botão *Temperatura* (Temperature)

Pt100 T offset.vi		×
Press OK when temperature is stable		
T(°C)Me	easured	
21.000		
OK Car	icel	

Pressione OK ao medir a temperatura de referência

• Insira a temperatura certificada e pressione OK

• OK armazena o resultado

Pt100 T offset.vi	
Calibration result	
	T(°C)Measured
	20.300
	Offset
Retry	20.300
ОК	Cancel

8.3 Calibração da SGx1000

8.3.1 Calibração do deslocamento da SGx1000

- Pressione calibração de deslocamento da SG (SG offset calibration)
- Insira uma SGx1000 certificada

SG Offset Calibration.vi	×		
Calibrating			
Certified SGx1000	Measured SGx1000		
949.6	949.6		
	Measured Temperature		
	20.00		
STOP			

Insira SGx1000 certificada

• O botão Calibrar (Calibrate) é exibido na tela

SG Offset Calibration.vi	×
Calibrating	
Certified SGx1000	Measured SGx1000
1000	947.3
	Measured Temperature
	20.00
Calibrate	
S	TOP

• A calibração foi concluída, a *SGx1000 medida* (Measured SGx1000) deve estar próximo à *SGx1000 certificada* (Certified SGx1000)

8.3.2 Calibração da amplitude da SGx1000

A calibração de amplitude da SGx1000 pode ser realizada através de dois métodos.

- 1 Ao inserir a SGx1000 certificada. Isso não deve ser realizado na mesma SGx1000 da calibração de deslocamento.
- 2 Ao alterar o fator de amplitude. Isso pode ser feito em qualquer leitura de corrente da SGx1000.

O fator de amplitude altera a sensibilidade da SGx1000. Se necessário, é possível calcular usando a fórmula exibida na parte superior da tela de calibração. Portanto, nesse caso, é mais fácil inserir a SGx1000 certificada conforme descrito no método 1.

SG Span Calibration.vi		
N.B.: SG's are multiplied by 1000 $Span_{SG} = \frac{SG_{Certified} - SG_{offset}}{SG_{Uncorrected} - SG_{offset}}$		
New SG (expected)	Uncorrected SG	
1875.04	1877.31	
Offset SG	Span SG Old	
1900.00 1.000		
Certified SG	Span SG	
0.00	1.100	
	STOP	
SG Result	OK SG Span Result	
1901.27	1.100	

ESPECIFICAÇÕES TÉCNICAS

9. Especificações técnicas

9.1 Características de operação

Densidade:

Resolução	0,2 g/l
Precisão	+/- 0,005 S.G.
Reprodutibilidade	1 g/l
Intervalo	700 g/l 3000 g/l

Saída de 4-20 mA do HART (1x):

Resolução	± 0,002% de FS
Repetibilidade	± 0,02% de FS
Corrente de saída	\pm 4–20 mA na carga de 250 Ω

Interfaces:

Interface serial HART, USB

9.2 Compartimento do SDM

Dimensões (SDM, compartimento)	Ø125 x 212 mm, (ØxC)
Dimensões (SDM, ponta do sensor)	Ø60 x 65 + Ø25 x (16/34/52/146/200) mm, (ØxC)
Área efetiva de exibição	65 x 35 mm (LxA)
Classificação IP (com tampas)	IP 68
Classificação IP (sem tampas)	IP 54
Temperatura ambiente	-5 °C a +50 °C
Umidade relativa	< 95% a 40 °C (sem condensação)
Cor e resolução do visor	240 X 128 pontos (LxA), 5 cores
Botões de controle	Domo metálico em relevo almofadado, 4 peças
Peso	6,4–6,8 kg
Consumo de energia	8 W no máximo
Fusível (24 VCC)	5 x 20 mm, 630 mA (T)
Condições de armazenamento	-40 °C a +75 °C

Não abra as tampas quando os circuitos estiverem ligados em áreas de risco.

ESPECIFICAÇÕES TÉCNICAS

9.3 Sensor do SDM

Partes úmidas:

Nitreto de silício (ligado) Aço duplex Si3N4 ASTM/ASME: A240 UNS S32205/S31803 EURONORM: 1.4462 X2CrNiMoN 22.5.3 AFNOR: Z3 CrNi 22.05 AZ DIN: W.Nr 1.4462 ISO: 4462-318-03-I BS: 318S13 SS: 2377 JIS: SUS 329J3L

9.4 Carretel/Weldolet/Wafer

Dimensões específicas:

- Carretel: Diâmetros até 30" (NW 750 mm)
- Weldolet:
 - SDM-2 com espessura de parede de até 17 mm
 - o SDM-3 com espessura de parede de 17 a 39 mm
- Wafer: Diâmetros até 60" (NW 1500 mm)

Para dimensões exatas, entre em contato com a Rhosonics. Tudo depende das especificações do flange e do uso da tubulação.

ANEXOS

10. Anexos

10.1 Lista de peças de reposição

- Fusíveis Ø5 x 20 mm, 630 mA, Lento, Art nº:
- Sensor (incl. anel de vedação), Art nº:
- Sensor (sem o anel de vedação), Art nº:
- Anel de vedação, Art nº:
- Abraçadeira para o sensor, Art nº:
- Tampa dianteira, Art nº:
- Compartimento com partes elétricas internas, Art nº:

ZEPC-FUSE-T630MA-5X20 3A0-322-043-A 3A0-322-032-A TRI-CLAMP-1½Z-ENVELOP TRI-CLAMP-HEAVY-1½Z 3A0-212-027-A (também se encaixa na parte traseira) 3A0-210-031-A

10.2 Opções

- Conversor/fonte de alimentação, saída de 24 VCC, entrada de 90... 264 VCA Art nº: ZEAS-PS-24VDC-DNR18US24
- HART para conversor Modbus RTU, Art nº: 9999-GATEWAY-GW-800-B
- Kit de manutenção, Art nº: 9D-SERVICE-KIT (contém um cabo macho USB-A para USB-A, dois medidores e um software Rhosonics para manutenção), somente para distribuidores

T [°C]	c [m/s]	T [°C]	c [m/s]	T [°C]	c [m/s]	T [°C]	c [m/s]
0	1402,388	25	1496,687	50	1542,551	75	1555,133
1	1407,367	26	1499,323	51	1543,619	76	1555,081
2	1412,232	27	1501,883	52	1544,636	77	1554,991
3	1416,985	28	1504,37	53	1545,601	78	1554,862
4	1421,628	29	1506,784	54	1546,517	79	1554,696
5	1426,162	30	1509,127	55	1547,382	80	1554,492
6	1430,589	31	1511,399	56	1548,199	81	1554,251
7	1434,912	32	1513,603	57	1548,967	82	1553,974
8	1439,132	33	1515,738	58	1549,687	83	1553,66
9	1443,251	34	1517,806	59	1550,36	84	1553,31
10	1447,27	35	1519,81	60	1550,986	85	1552,924
11	1451,191	36	1521,745	61	1551,566	86	1552,504
12	1455,016	37	1523,618	62	1552,101	87	1552,048
13	1458,747	38	1525,428	63	1552,59	88	1551,558
14	1462,384	39	1527,176	64	1553 <i>,</i> 035	89	1551,034
15	1465,931	40	1528,863	65	1553,437	90	1550,476
16	1469,387	41	1530,489	66	1553,794	91	1549,884
17	1472,755	42	1532,066	67	1554,109	92	1549,259
18	1476,036	43	1533,564	68	1554,381	93	1548,602
19	1479,231	44	1535,015	69	1554,611	94	1547,912
20	1482,343	45	1536,409	70	1554,799	95	1547,19
21	1485,372	46	1537,746	71	1554,947	96	1546,436
22	1488,319	47	1539,028	72	1555,053	97	1545,651
23	1491,187	48	1540,256	73	1555,12	98	1544,834
24	1493,976	49	1541,43	74	1555,146	99	1543,987
						100	1543,109

10.3 Anexo A: Velocidade do som da água de 0 a 100 °C

Velocidade do som da água [m/s] em diferentes temperaturas [°C]

ANEXOS

T [°C]	RHO [g/l]						
0	999,86341	25	997,04784	50	988,00825	75	974,85658
1	999,91390	26	996,78615	51	987,55238	76	974,25961
2	999,94857	27	996,51495	52	987,09017	77	973,65750
3	999,96773	28	996,23442	53	986,62172	78	973,05025
4	999,9717	29	995,94474	54	986,14709	79	972,43790
5	999,96082	30	995,64608	55	985,66636	80	971,82046
6	999,93537	31	995,33859	56	985,17959	81	971,19794
7	999,89566	32	995,02246	57	984,68686	82	970,57037
8	999,84198	33	994,69781	58	984,18822	83	969,93776
9	999,77462	34	994,36483	59	983,68373	84	969,30013
10	999,69386	35	994,02363	60	983,17346	85	968,65748
11	999,59998	36	993,67438	61	982,65745	86	968,00984
12	999,49325	37	993,31720	62	982,13577	87	967,35721
13	999,37393	38	992,95224	63	981,60845	88	966,69961
14	999,24227	39	992,57962	64	981,07555	89	966,03705
15	999,09854	40	992,19946	65	980,53711	90	965,36954
16	998,94297	41	991,81189	66	979,99318	91	964,69708
17	998,77580	42	991,41702	67	979,44379	92	964,01969
18	998,59727	43	991,01497	68	978,88899	93	963,33739
19	998,40761	44	990,60585	69	978,32881	94	962,65017
20	998,20703	45	990,18976	70	977,76328	95	961,95804
21	997,99576	46	989,76681	71	977,19245	96	961,26103
22	997,77400	47	989,33709	72	976,61633	97	960,55912
23	997,54196	48	988,90070	73	976,03496	98	959,85235
24	997,29984	49	988,45772	74	975,44837	99	959,14070
						100	958,42421

10.4 Anexo B: Velocidade da água a 0-100 °C

Densidade da água [g/l ou kg/m3] em temperaturas diferentes [°C]

ANEXOS

10.5 Anexo C: Comandos de HART do SDM

O SDM suporta todos os comandos de práticas comuns e universais conforme descrito em: "Especificação de dispositivo de campo HART: analisador 9D-series da Rhosonics"

10.5.1 Comandos específicos relevantes de dispositivo do SDM

Todos os comandos específicos do dispositivo são suportados e possuem a seguinte relevância para o SDM:

Nº de	Descrição
comando	
150	Ler modelo de configuração de fábrica
215	Ler medições de interface
217	Ler deslocamento da temperatura
218	Gravar deslocamento da temperatura
219	Ler deslocamento da SGx1000
220	Gravar deslocamento da SGx1000
221	Ler amplitude da SG
222	Gravar amplitude da SG
224	Desfazer calibrações do cliente
225	Ler tipos de medição
236	Ler densidade

10.5.2 Variáveis relevantes de dispositivo do SDM

As seguintes variáveis de dispositivo são relevantes para o SDM, pois foram medidas por um sensor ou são resultantes de um cálculo:

Nº de variável do dispositivo	Descrição
3	Temperatura
4	SGx1000

QUEM SOMOS

MEDIÇÃO ALÉM DOS LIMITES

A sede da Rhosonics está localizada na Holanda, perto de Amsterdam. Projetamos, produzimos e fornecemos instrumentos de medição com tecnologia de ponta para quase todos os setores. A empresa colabora com parceiros em todo o mundo para oferecer as melhores soluções tecnológicas. Fazemos uso de nossa habilidade, capacidade e

FALE CONOSCO

Rhosonics Analytical B.V. Hoge Eng West 30 3882TR Putten, Holanda

Telefone: +31 341 – 37 00 73 E-mail: info@rhosonics.com Site: www.rhosonics.com

